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Reynolds Stresses in a Lattice Gas 

F. Hayot  ~ 

I use a previously proposed algorithm, based on L6vy walks, to calculate and 
discuss longitudinal and transverse velocity correlations in turbulent channel 
flow. The general approach is that of lattice gas hydrodynamics. 
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1. I N T R O D U C T I O N  

In a previous work (1) I proposed to use an algorithm based on L6vy walks 
to generate turbulent behavior in lattice gas hydrodynamics. The starting 
point was a suggestion by Shlesinger et  al. ~2) that L6vy walks furnish the 
relevant description of enhanced diffusion in fully developed turbulence. 
One is able in particular to recover Richardson's law, (3) which expresses 
the fact that the average distance squared between two fluid particles 
increases as the cube of time. Though one deals with probability density 
distributions for distances which lack a second-order moment, (2) the 
formalism of L6vy walks handles these situations through associating a 
completion time to each distance. (2) 

An attractive feature of L6vy walks is the clear physical picture behind 
them, namely that of momentum mixing over large distance. It is reminis- 
cent of the very successful phenomenological description of turbulent 
channel flows based on Prandtl's mixing length, (4) and of closure approxi- 
mations for turbulent flows. Let me recall here that Prandtl's mixing length 
is not a fixed characteristic number, but that it increases with distance from 
the channel wall. 
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The clear physical picture makes L6vy walks natural candidates for 
implementation at the microscopic lattice gas level. Since lattice gas 
hydrodynamics involves particles moving from site to site of a regular lat- 
tice, exchanges between sites can be easily implemented through additional 
algorithmic rules. The implementation is of course not unique when going 
from the macroscopic level to the microscopic one. What I proposed (1) is 
a straightforward one, the relevance of which must be tested against 
experimental results. However, one expects results to be insensitive to the 
precise form of implementation, provided the basic physics of the approach 
is respected. The outcome is the equivalent in lattice gas hydrodynamics of 
a closure approximation to the Navier-Stokes equations. 

In ref. 1 I presented and discussed results on flow velocity profiles in 
turbulent channel flow. In particular in the case when distances are scaled 
by channel width, and velocity by its maximum value, I showed that the 
flattening of the velocity profile can correspond to an effective Reynolds 
number of 105 for the right value of z, the exponent of the algebraic 
probability density distribution of distances [see Eq. (1), Section 2]. I also 
discussed the logarithmic velocity profile and showed that it had the 
right magnitude and shape. However, a discussion of Reynolds stresses was 
lacking. These are the subject of the present work. 

The lattice gas model considered is the basic, two-dimensional, 
hexagonal one without rest particles, and with two-, three-, and four- 
particle collisions, both symmetric and asymmetric. (5~ 

In Section 2 I describe the L~vy walk algorithm and the computation 
of Reynolds stresses, and in Section 3 I present results on the latter. These 
are followed by a discussion and conclusion. 

2. LEVY W A L K  A L G O R I T H M  

Let me recall that an update in lattice gas hydrodynamics is a 
combination of both a translation of particles into the directions of their 
velocity vectors followed by a momentum and energy-conserving collision, 
if allowed. In between two successive updates the L6vy walk part of the 
algorithm proceeds as follows. 

Imagine pressure-driven channel flow in the y direction, in a channel 
of width 2L in the x direction. A distance l is drawn from an algebraic 
probability density distribution of the form 

p(l) ~ t - z  (1) 

The value of z is 1.35 for the results reported here and the main results of 
ref. 1. Dependence on z and the fact that it is basically the only parameter 
are discussed in ref. 1. 
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Once l is drawn, a point S is uniformly chosen through the channel, 
and the particle configurations at two sites at equal distances l from S in 
a direction transverse to the flow, i.e., the x direction, are exchanged. This 
operation corresponds to momentum exchange over a distance of 2/, such 
that overall momentum is indeed conserved. 

The algebraic distribution is such that the first moment diverges with 
the width of the system. This is, however, not the whole story. In L6vy 
walks a completion time is associated with each distance. Here, for a 
chosen l, the number of exchanges, or correspondingly the number of 
points S chosen, thus depends on the value of l. The algorithm is such that 
the larger l is, the fewer exhanges over distance 2l take place. Compared to 
the update time, this is saying that the characteristic time associated with 
distance 1 is larger, the greater l is. This feature is consistent with the 
corresponding aspect of L~vj~ walks. (2) Since the typical velocity profile 
flattening of turbulent channel flow can occur only when momentum 
exchanges take place over sufficiently large distances, an equivalent state- 
ment is that only characteristic jumping times close to the update time play 
a role. For a given l and the corresponding choice of number of 
exchanges (z) as many different points S are drawn until the required 
number of exchanges has taken place. 

The two components of the Reynolds stress tensor I am computing are 
the correlation between longitudinal and transverse fluctuating velocity 
components and the average of the square of the longitudinal one. More 
precisely, call u the longitudinal and v the transverse fluctuating velocity 
components, u is the velocity component in the direction of the flow. Then 
I am considering <uv>/U 2 and <u2>/U 2, where U denotes the maximum 
average velocity, which corresponds to the centerline velocity, u is 
calculated as the difference of longitudinal velocity components (nor- 
malized by the relevant number of particles) between the configurations 
which are exchanged, and v is related to the transfer of momentum across 
the (transverse) distance between the two configurations. This entails in 
particular that the longitudinal transverse correlation is antisymmetric 
with respect to the channel center, as it has to be. Results are divided by 
the length of the channel, and the value calculated is attributed to the 
bin in which the corresponding midpoint, called S above, lies. (Bins are 
10 lattice units wide, for a system of maximum width 640 in lattice units.) 

3. R E S U L T S  O N  V E L O C I T Y  C O R R E L A T I O N S  

There is one characteristic velocity in turbulent channel flow, which 
gives the order of magnitude of any velocity correlation. This velocity, 
called v*, is determined by the shear stress at the wall. It traditionally 
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Fig. 1. Longitudinal turbulent velocity correlation, normalized by the max imum average 
velocity, as a function of distance from the wall normal  to the flow. The distance x is nor- 
malized by L, which is half the channel width. The wall is at x = 0. Numerical results are the 
points. The comparison is with data  from ref. 6, represented by the line. (Very close to the wall 
the fluctuations go to zero. This region is not  shown.) 

appears in the scaled variables which enter into the expression of the 
logarithmic velocity profile. Its value can be extracted from the scaled, 
flattened velocity profile in the manner described in ref. 4. 

The values of (uv) and (u  2) therefore must both be of order v .2. 
This is what is observed experimentally. Another feature which appears in 
the experimental results is that correlations (uv) are smaller than (u  2). 

What is therefore expected in our L6vy walk approach? 
In ref. 1 it was found for v* that 

v* = 0.02 

Since the value of v* is extracted from the scaled velocity profile, it 
depends on the (only) parameter z in Eq. (1). The value above corresponds 
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Fig. 2. Negative of the longitudinal-transverse turbulent velocity correlation as a function of 
distance from the wall across the channel. The wall is at x = 0. The normalizations are, respec- 
tively, with respect to the square of the max imum average velocity, and the half channel 
width. Numerical  results are the points. The comparison is with data from ref. 6, represented 
by the line. (Very close to the wall the fluctuations go to zero. This region is not  shown.) 
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to z = 1.35, as are all the results reported here. Since we have ~) U2= 0.1, 
we should for consistency find that 

(bt12)/U 2 is of order 4 x 10 -3, X/-~/U is of order 6 x 10 -2 

This is precisely what is found, with the longitudinal fluctuations 
almost exactly equal to that value, and with longitudinal-transverse 
fluctuations smaller, as is observed. The results are shown in Figs. 1 and 2, 
where they are compared with Laufer's (6~ results on channel flow at a 
Reynolds number of 61,600. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N  

As the comparisons in Figs. 1 and 2 show, the agreement between 
numerical and experimental results is far from perfect. However, it is, 
I believe, overall satisfactory, despite discrepancies in magnitude of a factor 
of two or more for some limited values of wall distance. What is more 
important than these discrepancies--which I come back to below--is the 
overall consistency of the L~vy walk approach, which I have stressed in the 
previous section. 

For the longitudinal fluctuations Laufer's ~6~ data show a stronger 
dependence on distance, and for longitudinal-transverse correlations the 
approach to zero at midchannel is not the same. One should not, however, 
exaggerate the importance of discrepancies, for calculations of correlations 
involve assumptions. For instance, the length in lattice units over which 
momentum exchange takes place (relevant to the longitudinal-transverse 
fluctuations) is to be expressed as a macroscopic length. I have used a basic 
macroscopic unit of ten lattice gas ones, which corresponds to the width of 
the domains over which I take time averages, and is also roughly equal to 
the mean free path for laminar flow. But clearly an uncertainty of a factor 
of two is possible. There are equally simplifying assumptions in other 
numerical methods applied to three-dimensional channel (7-9) or turbulent 
boundary layer flow, (1~ and discrepancies with Laufer's results are 
noted. (7'9~ I should point out here that for turbulent boundary layers, 
where the layer thickness replaces the channel width, results on velocity 
correlations are similar to those of channel flow. (~1) 

Dependence of results on Reynolds number has been hitherto neglec- 
ted. It turns out to be weak for quantities scaled by maximum average 
velocity and channel width as soon as the Reynolds number is high 
enough. This is apparent already from the average scaled velocity profile. (4) 
As shown before (1) for L6vy walks, it is essentially the exponent z in the 
probability density distribution for distances (cf. Section 2) which controls 
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the dependence on Reynolds numbers: higher values of z lead to a lesser 
tail for the distribution of distances over which momentum exchanges take 
place, and consequently there is less flattening of the laminar velocity 
profile. The average distance involved in exchanges grows weakly for large 
L a s  L 2 z and therefore dependence on Reynolds number  is weak, as 
indicated by the data. 

In conclusion, one can say that the results are encouraging, and that, 
considering together the results of ref. 1 a n d t h o s e  of this work, the L6vy 
walk approach to turbulent channel flow in lattice gas hydrodynamics 
leads to a consistent, satisfactory description of experimental results. Many 
other aspects of turbulent channel flow and of other flows could and need 
to be investigated within the same approach. 
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